Explainable and Transparent AI and Multi-Agent Systems : 6th International Workshop, EXTRAAMAS 2024, Auckland, New Zealand, May 6-10, 2024, Revised Selected Papers (Lecture Notes in Computer Science) (2024)

個数:

Explainable and Transparent AI and Multi-Agent Systems : 6th International Workshop, EXTRAAMAS 2024, Auckland, New Zealand, May 6-10, 2024, Revised Selected Papers (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 243 p.
  • 商品コード 9783031700736

Full Description

This volume constitutes the papers of several workshops which were held in conjunction with the 6th International Workshop on Explainable and Transparent AI and Multi-Agent Systems, EXTRAAMAS 2024, in Auckland, New Zealand, during May 6-10, 2024.

The 13 full papers presented in this book were carefully reviewed and selected from 25 submissions. The papers are organized in the following topical sections: User-centric XAI; XAI and Reinforcement Learning; Neuro-symbolic AI and Explainable Machine Learning; and XAI & Ethics.

Contents

.- User-centric XAI.

.- Effect of Agent Explanations Using Warm and Cold Language on User Adoption of Recommendations for Bandit Problem.

.- Evaluation of the User-centric Explanation Strategies for Interactive Recommenders.

.- Can Interpretability Layouts Influence Human Perception of Offensive Sentences?.

.- A Framework for Explainable Multi-purpose Virtual Assistants: A Nutrition-Focused Case Study.

.- XAI and Reinforcement Learning.

.- Learning Temporal Task Specifications From Demonstrations.

.- Temporal Explanations for Deep Reinforcement Learning Agents.

.- An Adaptive Interpretable Safe-RL Approach for Addressing Smart Grid Supply-side Uncertainties.

.- Model-Agnostic Policy Explanations: Biased Sampling for Surrogate Models.

.- Neuro-symbolic AI and Explainable Machine Learning.

.- Explanation of Deep Learning Models via Logic Rules Enhanced by Embeddings Analysis, and Probabilistic Models.

.- py ciu image: a Python library for Explaining Image Classification with Contextual Importance and Utility.

.- Towards interactive and social explainable artificial intelligence for digital history.

.- XAI & Ethics.

.- Explainability and Transparency in Practice: A Comparison Between Corporate and National AI Ethics Guidelines in Germany and China.

.- The Wildcard XAI: from a Necessity, to a Resource, to a Dangerous Decoy.

最近チェックした商品