Intelligent and Fuzzy Systems : Intelligent Industrial Informatics and Efficient Networks Proceedings of the INFUS 2024 Conference, Volume 1 (Lecture Notes in Networks and Systems) (2024)

個数:

Intelligent and Fuzzy Systems : Intelligent Industrial Informatics and Efficient Networks Proceedings of the INFUS 2024 Conference, Volume 1 (Lecture Notes in Networks and Systems) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 785 p.
  • 言語 ENG
  • 商品コード 9783031700170

Full Description

This book presents recent research in intelligent and fuzzy techniques on Intelligent Industrial Informatics and Efficient Networks. This cutting-edge field integrates advanced technologies, such as artificial intelligence, machine learning and data analytics, into industrial processes, revolutionizing the way industries operate. The book presents the examples of the implementation of smart sensors and IoT devices, which facilitate real-time data collection and communication. High-speed, low-latency networks ensure that information flows effortlessly between devices, enabling timely responses and enabling the coordination of complex manufacturing processes. This network architecture supports the integration of edge computing, where data processing occurs closer to the source, reducing latency and enabling faster decision-making. The readers can benefit from this book for maintaining a leadership position among competitors in both manufacturing and service companies. The intended readers are intelligent and fuzzy systems researchers, lecturers, M.Sc. and Ph.D. students studying intelligent and fuzzy techniques. The book covers fuzzy logic theory and applications, heuristics and metaheuristics from optimization to machine learning, from quality management to risk management, making the book an excellent source for researchers.

Contents

Chapter 1. Mathematical Modelling and Fuzzy Logic.- Chapter 2. Extreme Learning Machine - a New Machine Learning Paradigm.- Chapter 3. A New Mandatory-Optional Bipolar Model of Decision Making in a Fuzzy Environments.- Chapter 4. Games, fuzzy measures, indices, and explainable ML: exploiting the game.- Chapter 5. Fuzzy Performance Measurement: A Literature Review.- Chapter 6. Evaluation of business intelligence tools for thelogistics sector with hesitant fuzzy hybrid MCDM methods.- Chapter 7. Investigating Smart City Applications: A Case Study from İstanbul.- Chapter 8. Fermatean fuzzy TOPSIS method based on prospect theory.- Chapter 9. New Multi Criteria Decision Making Methodology EFEE under Uncertainty on Paris City Micromobility.- Chapter 10. Threshold Aggregation of Fuzzy Data Using Fuzzy Cardinalities of a Set of Fuzzy Estimates.- Chapter 11. A Collaborative Decision-Making Framework in Humanitarian Logistics.- Chapter 12. Integrating Fuzzy AHP and TOPSIS for Optimal Air Fryer Selection: A Consumer-Centric Approach.- Chapter 13. A Comparative Analysis of Classical AHP, Fuzzy AHP, and Z-Fuzzy AHP Methods for Flood Risk Assessment in Büyükçekmece District.- Chapter 14. Fuzzy evaluation of stakeholders' aspects in water resources management.- Chapter 15. Sustainability Performance Evaluation in Faculties: A COPRAS-Based Assessment.- Chapter 16. Evaluating the Coherence and Diversity inAI-Generated and Paraphrased Scientific Abstracts: A Fuzzy Topic Modeling Approach.- Chapter 17. Automatic Target Generation for ElectronicData Interchange using Sequence-to-Sequence Models.- Chapter 18. Artificial Intelligence Enriching Contributionsfrom Multiple Perspectives in Ancient Text Analysis.- Chapter 19. Identifying and Mitigating Bias in AI-Generated Image Datasets for Better Cognitive Understanding.- Chapter 20. Comparative Analysis of Large Language Models in Source Code Analysis...etc.

最近チェックした商品