Statistical Modeling and Applications : Multivariate, Heavy-Tailed, Skewed Distributions and Mixture Modeling, Volume 2 (Emerging Topics in Statistics and Biostatistics) (2024)

個数:
  • ポイントキャンペーン

Statistical Modeling and Applications : Multivariate, Heavy-Tailed, Skewed Distributions and Mixture Modeling, Volume 2 (Emerging Topics in Statistics and Biostatistics) (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9783031696213

Full Description

In an era defined by the seamless integration of data and sophisticated analytical and modeling techniques, the quest for advanced statistical modeling and methodologies has never been more pertinent. Statistical Modeling and Applications: Multivariate, Heavy-Tailed, Skewed Distributions, Mixture and Neural-Network Modeling, Volume 2, represents a concerted effort to bridge the gap between theoretical advancements and practical applications in the realm of Statistical Science, namely in the area of Statistical Modeling. It also aims to present a wide range of emerging topics in mathematical and statistical modeling written by a group of distinguished researchers from top-tier universities and research institutes to offer broader opportunities in stimulating further collaborations in the areas of mathematics and statistics.

The book has eleven chapters, divided in two Parts, with Part I comprising five chapters dealing with the application of Multivariate Analysis techniques and multivariate distributions to a set of different situations, and Part II consisting of six chapters which address the modeling of several interesting phenomena through the use of Heavy-Tailed, Skewed, Circular-Linear and Mixture Distributions, as well as Neural Networks.

Contents

.- Random Gaussian fields and systems of stochastic partial differential equations.

.- A Poly-cylindrical Bayesian network for clustering oceanographic data.

.- A Copula-Based Approach to Statistical Modelling of Solar Irradiance.

.- Two-sample intraclass correlation coefficient tests for matrix-valued data.

.- Evolution of the generation and analysis of single imputation synthetic datasets in Statistical Disclosure Control.

.- Some empirical findings on neural network-based forecasting when subjected to autoregressive resampling.

.- Enriched lognormal models for income data:A new approach to estimate semi-parametric Gaussian mixtures of regressions with varying mixing proportions.

.- Computational comparisons of two-component mixtures using Lindley-type models.

.- Baranchik-type estimators under modified balanced loss functions.

.- Modelling the movement of a South African cheetah using a hidden Markov model and circular-linear regression.

最近チェックした商品