Big Data Infrastructure Technologies for Data Analytics : Scaling Data Science Applications for Continuous Growth (2024)

個数:

Big Data Infrastructure Technologies for Data Analytics : Scaling Data Science Applications for Continuous Growth (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 544 p.
  • 言語 ENG
  • 商品コード 9783031693656

Full Description

This book provides a comprehensive overview and introduction to Big Data Infrastructure technologies, existing cloud-based platforms, and tools for Big Data processing and data analytics, combining both a conceptual approach in architecture design and a practical approach in technology selection and project implementation.

Readers will learn the core functionality of major Big Data Infrastructure components and how they integrate to form a coherent solution with business benefits. Specific attention will be given to understanding and using the major Big Data platform Apache Hadoop ecosystem, its main functional components MapReduce, HBase, Hive, Pig, Spark and streaming analytics.   The book includes topics related to enterprise and research data management and governance and explains modern approaches to cloud and Big Data security and compliance.

The book covers two knowledge areas defined in the EDISON Data Science Framework (EDSF): Data Science Engineering and Data Management and Governance and can be used as a textbook for university courses or provide a basis for practitioners for further self-study and practical use of Big Data technologies and competent evaluation and implementation of practical projects in their organizations.

Contents

Chapter 1 Introduction. - Chapter 2 Big Data Technologies Foundation: Definition, Reference Architecture, use cases. - Chapter 3 Cloud Computing Foundation: Definition, Reference Architecture, Foundational Technologies, Use cases. - Chapter 4 Cloud and Big Data Service Providers and Platforms. - Chapter 5 Big Data Algorithms, MapReduce

and Hadoop ecosystem.- Chapter 6 Streaming Analytics and Spark.- Chapter 7 Data Structures for Big Data, Modern Big Data SQL and NoSQL Databases.-Chapter 8 Enterprise Data Governance and Management.- Chapter 9 Research Data Management.- Chapter 10 Big Data Security and Compliance, Data Privacy Protection.- Chapter 11 Finding Data on the Web, Data sets, Web Scraping, Web API.- Chapter 12 Data Science Projects Management,DataOps, MLOPs.- Chapter13 Data Science Projects Development with Amazon SageMaker.- Chapter 14 Data Validation for Data Science Projects.

最近チェックした商品