Braids, Conformal Module, Entropy, and Gromov's Oka Principle (Lecture Notes in Mathematics) (2024)

個数:

Braids, Conformal Module, Entropy, and Gromov's Oka Principle (Lecture Notes in Mathematics) (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 428 p.
  • 言語 ENG
  • 商品コード 9783031672873

Full Description

This book studies the relation between conformal invariants and dynamical invariants and their applications, taking the reader on an excursion through a wide range of topics. The conformal invariants, called here the conformal modules of conjugacy classes of elements of the fundamental group, were proposed by Gromov in the case of the twice punctured complex plane. They provide obstructions to Gromov's Oka Principle. The invariants of the space of monic polynomials of degree n appeared earlier in relation to Hilbert's 13th Problem, and are called the conformal modules of conjugacy classes of braids.

Interestingly, the conformal module of a conjugacy class of braids is inversely proportional to a popular dynamical invariant, the entropy, which was studied in connection with Thurston's celebrated theory of surface homeomorphisms. This result, proved here for the first time, is another instance of the numerous manifestations of the unity of mathematics, and it has applications.

After prerequisites on Riemann surfaces, braids, mapping classes and elements of Teichmüller theory, a detailed introduction to the entropy of braids and mapping

classes is given, with thorough, sometimes new proofs.

Estimates are provided of Gromov's conformal invariants of the twice punctured complex plane and it is shown that the upper and lower bounds differ by universal multiplicative constants. These imply estimates of the entropy of any pure three-braid, and yield quantitative statements on the limitations of Gromov's Oka Principle in the sense of finiteness theorems, using conformal invariants which are related to elements of the fundamental group (not merely to conjugacy classes). Further applications of the concept of conformal module are discussed.  Aimed at graduate students and researchers, the book proposes several research problems.

 

Contents

1. Introduction.- 2. Riemann Surfaces, Braids, Mapping Classes, and Teichmueller Theory.- 3. The entropy of surface homeomorphisms.- 4. Conformal invariants of homotopy classes of curves. The Main theorem.- 5. Reducible pure braids. Irreducible nodal components, irreducible braid components, and the proof of the Main Theorem.- 6. The general case. Irreducible nodal components, irreducible braid components, and the proof of the Main Theorem.- 7. The conformal module and holomorphic families of polynomials.-  8. Gromov's Oka Principle and conformal module.- 9. Gromov's Oka Principle for (g, m)-fiber bundles.- 10. Fundamental groups and bounds for the extremal length.- 11. Counting functions.- 12. Riemann surfaces of second kind and finiteness theorems.- A. Several complex variables.- B. A Lemma on Conjugation.- C. Koebe's Theorem.- Index.- References.

最近チェックした商品