Explainable Artificial Intelligence : Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part IV (Communications in Computer and Information Science) (2024)

個数:

Explainable Artificial Intelligence : Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part IV (Communications in Computer and Information Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 466 p.
  • 商品コード 9783031638022

Full Description

This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. 

The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on:

Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI.

Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI.

Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI.

Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Contents

.- Explainable AI in healthcare and computational neuroscience.

.- SRFAMap: a method for mapping integrated gradients of a CNN trained with statistical radiomic features to medical image saliency maps.

.- Transparently Predicting Therapy Compliance of Young Adults Following Ischemic Stroke.

.- Precision medicine in student health: Insights from Tsetlin Machines into chronic pain and psychological distress.

.- Evaluating Local Explainable AI Techniques for the Classification of Chest X-ray Images.

.- Feature importance to explain multimodal prediction models. A clinical use case.

.- Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures.

.- Increasing Explainability in Time Series Classification by Functional Decomposition.

.- Towards Evaluation of Explainable Artificial Intelligence in Streaming Data.

.- Quantitative Evaluation of xAI Methods for Multivariate Time Series - A Case Study for a CNN-based MI Detection Model.

.- Explainable AI for improved human-computer interaction and Software Engineering for explainability.

.- Influenciae: A library for tracing the influence back to the data-points.

.- Explainability Engineering Challenges: Connecting Explainability Levels to Run-time Explainability.

.- On the Explainability of Financial Robo-advice Systems.

.- Can I trust my anomaly detection system? A case study based on explainable AI..

.- Explanations considered harmful: The Impact of misleading Explanations on Accuracy in hybrid human-AI decision making.

.- Human emotions in AI explanations.

.- Study on the Helpfulness of Explainable Artificial Intelligence.

.- Applications of explainable artificial intelligence.

.- Pricing Risk: An XAI Analysis of Irish Car Insurance Premiums.

.- Exploring the Role of Explainable AI in the Development and Qualification of Aircraft Quality Assurance Processes: A Case Study.

.- Explainable Artificial Intelligence applied to Predictive Maintenance: Comparison of Post-hoc Explainability Techniques.

.- A comparative analysis of SHAP, LIME, ANCHORS, and DICE for interpreting a dense neural network in Credit Card Fraud Detection.

.- Application of the representative measure approach to assess the reliability of decision trees in dealing with unseen vehicle collision data.

.- Ensuring Safe Social Navigation via Explainable Probabilistic and Conformal Safety Regions.

.- Explaining AI Decisions: Towards Achieving Human-Centered Explainability in Smart Home Environments.

.- AcME-AD: Accelerated Model Explanations for Anomaly Detection.

最近チェックした商品