Explainable Artificial Intelligence : Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II (Communications in Computer and Information Science) (2024)

個数:

Explainable Artificial Intelligence : Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II (Communications in Computer and Information Science) (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 514 p.
  • 商品コード 9783031637964

Full Description

This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. 

The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on:

Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI.

Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI.

Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI.

Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Contents

.- XAI for graphs and Computer vision.

.- Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems.

.- Graph-Based Interface for Explanations by Examples in Recommender Systems: A User Study.

.- Explainable AI for Mixed Data Clustering.

.- Explaining graph classifiers by unsupervised node relevance attribution.

.- Explaining Clustering of Ecological Momentary Assessment through Temporal and Feature-based Attention.

.- Graph Edits for Counterfactual Explanations: A comparative study.

.- Model guidance via explanations turns image classifiers into segmentation models.

.- Understanding the Dependence of Perception Model Competency on Regions in an Image.

.- A Guided Tour of Post-hoc XAI Techniques in Image Segmentation.

.- Explainable Emotion Decoding for Human and Computer Vision.

.- Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification.

.- Logic, reasoning, and rule-based explainable AI.

.- Template Decision Diagrams for Meta Control and Explainability.

.- A Logic of Weighted Reasons for Explainable Inference in AI.

.- On Explaining and Reasoning about Fiber Optical Link Problems.

.- Construction of artificial most representative trees by minimizing tree-based distance measures.

.- Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles.

.- Model-agnostic and statistical methods for eXplainable AI.

.- Observation-specific explanations through scattered data approximation.

.- CNN-based explanation ensembling for dataset, representation and explanations evaluation.

.- Local List-wise Explanations of LambdaMART.

.- Sparseness-Optimized Feature Importance.

.- Stabilizing Estimates of Shapley Values with Control Variates.

.- A Guide to Feature Importance Methods for Scientific Inference.

.- Interpretable Machine Learning for TabPFN.

.- Statistics and explainability: a fruitful alliance.

.- How Much Can Stratification Improve the Approximation of Shapley Values?.