前原濶(共)著/円、球面、球面幾何学(テキスト)<br>Circles, Spheres and Spherical Geometry (Birkhauser Advanced Texts / Basler Lehrbucher) (2024)

個数:

前原濶(共)著/円、球面、球面幾何学(テキスト)
Circles, Spheres and Spherical Geometry (Birkhauser Advanced Texts / Basler Lehrbucher) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9783031627750

Full Description

This textbook focuses on the geometry of circles, spheres, and spherical geometry. Various classic themes are used as introductory and motivating topics.

The book begins very simply for the reader in the first chapter discussing the notions of inversion and stereographic projection. Here, various classical topics and theorems such as Steiner cycles, inversion, Soddy's hexlet, stereographic projection and Poncelet's porism are discussed. The book then delves into Bend formulas and the relation of radii of circles, focusing on Steiner circles, mutually tangent four circles in the plane and other related notions. Next, some fundamental concepts of graph theory are explained. The book then proceeds to explore orthogonal-cycle representation of quadrangulations, giving detailed discussions of the Brightwell-Scheinerman theorem (an extension of the Koebe-Andreev-Thurston theorem), Newton's 13-balls-problem, Casey's theorem (an extension of Ptolemy's theorem) and its generalizations. The remainder of the book is devoted to spherical geometry including a chapter focusing on geometric probability on the sphere.

The book also contains new results of the authors and insightful notes on the existing literature, bringing the reader closer to the research front. Each chapter concludes with related exercises of varying levels of difficulty. Solutions to selected exercises are provided. 

This book is suitable to be used as textbook for a geometry course or alternatively as basis for a seminar for both advanced undergraduate and graduate students alike.

Contents

- Inversion and stereographic projection.- Bend formulas.- Graphs and circle-systems.- Spherical geometry I.- Spherical geometry II.- The problem of thirteen balls.- Spherical geometry III.- Geometric probability on the sphere.- Intersection graphs of spherical caps.- Quartets on a sphere.- Higher dimensions.- The Cayley-Menger determinant.- Casey's theorem.- Solutions to the selected exercises.

最近チェックした商品