金融のための計算と予測:Pythonを用いた入門<br>Computation and Simulation for Finance : An Introduction with Python (Springer Undergraduate Texts in Mathematics and Technology) (2024. xvi, 330 S. XVI, 330 p. 69 illus., 61 illus. in color. 235 mm)

個数:

金融のための計算と予測:Pythonを用いた入門
Computation and Simulation for Finance : An Introduction with Python (Springer Undergraduate Texts in Mathematics and Technology) (2024. xvi, 330 S. XVI, 330 p. 69 illus., 61 illus. in color. 235 mm)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031605741

Full Description

This book offers an up-to-date introductory treatment of computational techniques applied to problems in finance, placing issues such as numerical stability, convergence and error analysis in both deterministic and stochastic settings at its core.

The first part provides a welcoming but nonetheless rigorous introduction to the fundamental theory of option pricing, including European, American, and exotic options along with their hedge parameters, and combines a clear treatment of the mathematical framework with practical worked examples in Python. The second part explores the main computational methods for valuing options within the Black-Scholes framework: lattice, Monte Carlo, and finite difference methods. The third and final part covers advanced topics for the simulation of financial processes beyond the standard Black-Scholes setting. Techniques for the analysis and simulation of multidimensional financial data, including copulas, are covered and will be of interest to those studying machine learning for finance. There is also an in-depth treatment of exact and approximate sampling methods for stochastic differential equation models of interest rates and volatilities.

Written for advanced undergraduate and masters-level courses, the book assumes some exposure to core mathematical topics such as linear algebra, ordinary differential equations, multivariate calculus, probability, and statistics at an undergraduate level. While familiarity with Python is not required, readers should be comfortable with basic programming constructs such as variables, loops, and conditional statements.

Contents

- Part I Modelling Assets and Markets.- Introduction.- The Pricing of Financial Derivatives.- Part II Computational Pricing Methods in the Black-Scholes Framework.- Binomial Tree Methods.- Simulation I: Monte Carlo Methods.- Finite Difference Methods.- Part III Simulation Methods Beyond the Black-Scholes Framework.- Simulation II: Modelling Multivariate Financial Data.- Stochastic Models for Interest Rates.- Simulation III: Numerical Approximation of SDE Models.

最近チェックした商品