Point-Set Topology : A Working Textbook (Springer Undergraduate Mathematics Series) (2024. 2024. viii, 398 S. VIII, 398 p. 120 illus., 7 illus. in color. 2)

個数:

Point-Set Topology : A Working Textbook (Springer Undergraduate Mathematics Series) (2024. 2024. viii, 398 S. VIII, 398 p. 120 illus., 7 illus. in color. 2)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783031585128

Full Description

This textbook offers a hands-on introduction to general topology, a fundamental tool in mathematics and its applications. It provides solid foundations for further study in mathematics in general, and topology in particular.

Aimed at undergraduate students in mathematics with no previous exposure to topology, the book presents key concepts in a mathematically rigorous yet accessible manner, illustrated by numerous examples. The essential feature of the book is the large sets of worked exercises at the end of each chapter. All of the basic topics are covered, namely, metric spaces, continuous maps, homeomorphisms, connectedness, and compactness. The book also explains the main constructions of new topological spaces such as product spaces and quotient spaces. The final chapter makes a foray into algebraic topology with the introduction of the fundamental group.

Thanks to nearly 300 solved exercises and abundant examples, Point-Set Topology is especially suitable for supplementing a first lecture course on topology for undergraduates, and it can also be utilized for independent study. The only prerequisites for reading the book are familiarity with mathematical proofs, some elements of set theory, and a good grasp of calculus.

Contents

- Introduction.- Topological spaces.- Proximity on a topological space.- Metric spaces.- Continuity.- Homeomorphisms and topological invariants.- Product topology.- Connectedness.- Compactness.- Quotient topology.- The fundamental group.

最近チェックした商品