Complex Networks XV : Proceedings of the 15th Conference on Complex Networks, CompleNet 2024 (Springer Proceedings in Complexity)

個数:

Complex Networks XV : Proceedings of the 15th Conference on Complex Networks, CompleNet 2024 (Springer Proceedings in Complexity)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 218 p.
  • 言語 ENG
  • 商品コード 9783031575143

Full Description

The International Conference on Complex Networks (CompleNet) brings together researchers and practitioners from diverse disciplines working on areas related to complex networks. CompleNet has been an active conference since 2009. Over the past two decades, we have witnessed an exponential increase in the number of publications and research centres dedicated to this field of Complex Networks (aka Network Science). From biological systems to computer science, from technical to informational networks, and from economic to social systems, complex networks are becoming pervasive for dozens of applications. It is the interdisciplinary nature of complex networks that CompleNet aims to capture and celebrate. The CompleNet conference is one of the most cherished events by scientists in our field. Maybe it is because of its motivating format, consisting of plenary sessions (no parallel sessions); or perhaps the reason is that it finds the perfect balance between young and senior participation, a balance in the demographics of the presenters, or perhaps it is just the quality of the work presented.

Contents

Chapter 1: Mapping low-resolution edges to high-resolution paths: the case of traffic measurements in cities.- Chapter 2: From Low Resource Information Extraction to Identifying Influential Nodes in Knowledge Graphs.- Chapter 3: Inhomogenous Marketing Mix Diffusion.- Chapter 4: Modelling both pairwise interactions and group effects in polarization on interaction networks.- Chapter 5: Computing Motifs in Hypergraphs.- Chapter 6: Extending network tools to explore trends in temporal granular trade networks.- Chapter 7: Expressivity of Geometric Inhomogeneous Random Graphs-Metric and Non-Metric.- Chapter 8: Social Interactions Matter: Is Grey Wolf Optimizer a Particle Swarm Optimization Variation?.- Chapter 9: Exploring Ingredient Variability in Classic Russian Cuisine Dishes through Complex Network Analysis.- Chapter 10: Unraveling the Structure of Knowledge: Consistency in Everyday Networks, Diversity in Scientific.- Chapter 11: Kinetic-based force-directed graph embedding.- Chapter12: Deep Graph Machine Learning Models for Epidemic Spread Prediction and Prevention.- Chapter 13: EleMi: A robust method to infer soil ecological networks with better community structure.- Chapter 14: Interpreting Node Embedding Distances Through n-order Proximity Neighbourhoods.- Chapter 15: Edge Dismantling with Geometric Reinforcement Learning.- Chapter 16: Public Transit Inequality in the Context of the Built Environment.

最近チェックした商品