Kidney and Kidney Tumor Segmentation : MICCAI 2023 Challenge, KiTS 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings (Lecture Notes in Computer Science)

個数:

Kidney and Kidney Tumor Segmentation : MICCAI 2023 Challenge, KiTS 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 164 p.
  • 言語 ENG
  • 商品コード 9783031548055

Full Description

This book constitutes the Third International Challenge on Kidney and Kidney Tumor Segmentation, KiTS 2023, which was held in conjunction with the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023. The challenge took place in Vancouver, BC, Canada, on October 8, 2023.

The 22 contributions presented in this book were carefully reviewed and selected from 29 submissions.

This challenge aims to develop the best system for automatic semantic segmentation of kidneys, renal tumors and renal cysts.

Contents

Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023.- Exploring 3D U-Net Training Configurations and Post-Processing Strategies for the MICCAI 2023 Kidney and Tumor Segmentation Challenge.- Dynamic resolution network for kidney tumor segmentation.- Analyzing domain shift when using additional data for the MICCAI KiTS23 Challenge.- A Hybrid Network based on nnU-net and Swin Transformer for Kidney Tumor Segmentation.- Leveraging Uncertainty Estimation for Segmentation of Kidney, Kidney Tumor and Kidney Cysts.- An Ensemble of 2.5D ResUnet Based Models for Segmentation of Kidney and Masses.- Using Uncertainty Information for Kidney Tumor Segmentation.- Two-Stage Segmentation and Ensemble Modeling: Kidney Tumor Analysis in CT Images.- GSCA-Net: A global spatial channel attention network for kidney, tumor and cyst segmentation.- Genetic Algorithm enhanced nnU-Net for the MICCAI KiTS23 Challenge.- Two-Stage Segmentation Framework with Parallel Decoders for the Kidney and Kidney Tumor Segmentation.- 3d U-Net with ROI Segmentation of Kidneys and Masses in CT Scans.- Deep Learning-Based Hierarchical Delineation of Kidneys, Tumors, and Cysts in CT Images.- Cascade UNets for Kidney and Kidney Tumor Segmentation.- Cascaded nnU-Net for Kidney and Kidney Tumor Segmentation.- A Deep Learning Approach for the Segmentation of Kidney, Tumor and Cyst in Computed Tomography Scans.- Recursive learning reinforced by redefining the train and validation volumes of an Encoder-Decoder segmentation model.- Attention U-net for Kidney and Masses.- Advancing Kidney, Kidney Tumor, Cyst Segmentation: A Multi-Planner U-Net Approach for the KiTS23 Challenge.- 3D Segmentation of Kidneys, Kidney Tumors and Cysts on CT Images - KiTS23 Challenge.- Kidney and Kidney Tumor Segmentation via Transfer Learning.

最近チェックした商品