Machine Learning, Optimization, and Data Science : 9th International Conference, LOD 2023, Grasmere, UK, September 22-26, 2023, Revised Selected Papers, Part II (Lecture Notes in Computer Science)

個数:

Machine Learning, Optimization, and Data Science : 9th International Conference, LOD 2023, Grasmere, UK, September 22-26, 2023, Revised Selected Papers, Part II (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 483 p.
  • 商品コード 9783031539657

Full Description

This book constitutes the refereed proceedings of the 9th International Conference on Machine Learning, Optimization, and Data Science, LOD 2023, which took place in Grasmere, UK, in September 2023. 

The 72 full papers included in this book were carefully reviewed and selected from 119 submissions. The proceedings also contain 9 papers from and the Third Symposium on Artificial Intelligence and Neuroscience, ACAIN 2023. The contributions focus on the state of the art and the latest advances in the integration of machine learning, deep learning, nonlinear optimization and data science to provide and support the scientific and technological foundations for interpretable, explainable and trustworthy AI. 

Contents

Integrated Human-AI Forecasting for Preventive Maintenance Task Duration Estimation.- Exploring Image Transformations with Diffusion Models: A Survey of Applications and Implementation Code.- Geolocation Risk Scores for Credit Scoring Models.- Social Media Analysis: The Relationship between Private Investors and Stock Price.- Deep learning model of two-phase fluid transport through fractured media: a real-world case study.- A Proximal Algorithm for Network Slimming.- Diversity in deep generative models and generative AI.- Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes.- kolopoly: Case Study on Large Action Spaces in Reinforcement Learning.- Alternating mixed-integer programming and neural network training for approximating stochastic two-stage problems.- Heaviest and densest subgraph computation for binary classification. A case study.- SMBOX: A Scalable and Efficient Method for Sequential Model-Based Parameter Optimization.- Accelerated Graph Integration with Approximation of Combining Parameters.- Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-Visual Environments: A Comparison.- A hybrid steady-state genetic algorithm for the minimum conflict spanningtree problem.- Reinforcement learning for multi-neighborhood local search in combinatorial optimization.- Evaluation of Selected Autoencoders in the Context of End-User Experience Management.- Application of multi-agent reinforcement learning to the dynamic scheduling problem in manufacturing systems.- Solving Mixed Influence Diagrams by Reinforcement Learning.- Multi-Scale Heat Kernel Graph Network for Graph Classification.- Accelerating Random Orthogonal Search for Global Optimization using Crossover.- A Multiclass Robust Twin Parametric Margin Support Vector Machine with an Application toVehicles Emissions.- LSTM noise robustness: a case study for heavy vehicles.- Ensemble Clustering for Boundary Detection in High-Dimensional Data.- Learning Graph Configuration Spaces with Graph Embedding in Engineering Domains.- Towards an Interpretable Functional Image-Based Classifier: Dimensionality.- Reduction of High-Density Di use Optical Tomography Data.- On Ensemble Learning for Mental Workload Classification.- Decision-making over compact preference structures.- User-Like Bots for Cognitive Automation: A Survey.- On Channel Selection for EEG-based Mental Workload Classification.- What Song Am I Thinking Of.- Path-Weights and Layer-Wise Relevance Propagation for Explainability of ANNs with fMRI Data.- Sensitivity Analysis for Feature Importance in Predicting Alzheimer?s Disease.- A Radically New Theory of how the Brain Represents and Computes with Probabilities.

最近チェックした商品