GANs for Data Augmentation in Healthcare

個数:

GANs for Data Augmentation in Healthcare

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 251 p.
  • 商品コード 9783031432040

Full Description

Computer-Assisted Diagnostics (CAD) using Convolutional Neural Network (CNN) model has become an important technology in the medical industry, improving the accuracy of diagnostics. However, the lack Magnetic Resonance Imaging (MRI) data leads to the failure of the depth study algorithm. Medical records are often different because of the cost of obtaining information and the time spent consuming the information. In general, clinical data is unreliable and therefore the training of neural network methods to distribute disease across classes does not yield the desired results. Data augmentation is often done by training data to solve problems caused by augmentation tasks such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue.

Data Augmentation and Segmentation imaging using GAN can be used to provide clear images of brain, liver, chest, abdomen, and liver on an MRI. In addition, GAN shows strong promise in the field of clinical image synthesis. In many cases, clinical evaluation is limited by a lack of data and/or the cost of actual information. GAN can overcome these problems by enabling scientists and clinicians to work on beautiful and realistic images. This can improve diagnosis, prognosis, and disease. Finally, GAN highlights the potential for location of patient information within the data. This is a beneficial clinical application of GAN because it can effectivelyprotect patient confidentiality. This book covers the application of GANs on medical imaging augmentation and segmentation.

Contents

Chapter. 1. Role of Machine learning in Detection and Classification of Leukemia: A Comparative Analysis.- Chapter. 2. A Review on Mode Collapse Reducing GANs with GAN's Algorithm and Theory.- Chapter. 3. Medical Image Synthesis using Generative Adversarial Networks.- Chapter. 4. Chest X-ray data augmentation with Generative Adversarial Networks for pneumonia and COVID diagnosis.- Chapter. 5. State of the Art Framework based Detection of GAN Generated Face Images.- Chapter. 6. Data Augmentation in Classifying Chest Radiograph Images (CXR) using DCGAN-CNN.- Chapter. 7. Data Augmentation Approaches Using Cycle Consistent Adversarial Networks.- Chapter. 8. Geometric Transformations-based Medical Image Augmentation.- Chapter. 9. Generative Adversarial Learning for Medical Thermal Imaging Analysis.- Chapter. 10. Improving Performance of a Brain Tumor Detection on MRI Images using DCGAN-based Data Augmentation and Vision Transformer(ViT) Approach.- Chapter. 11. Combining Super-Resolution GAN and DC GAN for Enhancing Medical Image Generation: A Study on Improving CNN Model Performance.- Chapter. 12. GAN for Augmenting Cardiac MRI Segmentation.- Chapter. 13. WGAN for Data Augmentation.- Chapter. 14. Image Segmentation in Medical Images by Using Semi - Supervised Methods.

最近チェックした商品