Brain Informatics : 16th International Conference, BI 2023, Hoboken, NJ, USA, August 1-3, 2023, Proceedings (Lecture Notes in Artificial Intelligence)

個数:

Brain Informatics : 16th International Conference, BI 2023, Hoboken, NJ, USA, August 1-3, 2023, Proceedings (Lecture Notes in Artificial Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 479 p.
  • 商品コード 9783031430749

Full Description

This book constitutes the proceedings of the 16th International Conference on Brain Informatics, BI 2023, which was held in Hoboken, NJ, USA, during August 1-3, 2023.

The 40 full papers presented in this book were carefully reviewed and selected from 101 submissions. The papers are divided into the following topical sections: cognitive and computational foundations of brain science; investigations of human Information processing systems; brain big data analytics, curation and management; informatics paradigms for brain and mental health research; brain-machine intelligence and brain-inspired computing; and the 5th international workshop on cognitive neuroscience of thinking and reasoning.

Contents

​Cognitive and Computational Foundations of Brain Science: Fusing Structural and Functional Connectivity using Disentangled VAE for Detecting MCI.- Modulation of Beta Power as a Function of Attachment Style and Feedback Valence.- Harnessing the Potential of EEG in Neuromarketing with Deep Learning and Riemannian Geometry.- A Model of the Contribution of Interneuron Diversity to Recurrent Network Oscillation Generation and Information Coding.- Measuring Stimulus-Related Redundant and Synergistic Functional Connectivity with Single Cell Resolution in Auditory Cortex.- Fusing Simultaneously Acquired EEG and fMRI via Hierarchical Deep Transcoding.- Investigations of Human Information Processing Systems: Decoding Emotion Dimensions Arousal and Valence Elicited on EEG Responses to Videos and Images: A Comparative Evaluation.- Stabilize Sequential Data Representation via Attractor Module.- Investigating the Generative Dynamics of Energy-Based Neural Networks.- Exploring Deep Transfer Learning Ensemble for Improved Diagnosis and Classification of Alzheimer's Disease.- Brain Big Data Analytics, Curation and Management: Effects of EEG Electrode Numbers on Deep Learning-Based Source Imaging.- Graph Diffusion Reconstruction Model for Addictive Brain-Network Computing.- MR Image Super-Resolution using Wavelet Diffusion for Predicting Alzheimer's Disease.- Classification of Event-Related Potential Signals with a Variant of UNet Algorithm using a Large P300 Dataset.- Dyslexia Data Consortium Repository: A Data Sharing and Delivery Platform for Research.- Conversion from Mild Cognitive Impairment to Alzheimer's Disease: A Comparison of Tree-based Machine Learning Algorithms for Survival Analysis.- Predicting Individual Differences from Brain Responses to Music: A Comparison of Functional Connectivity Measure.- Multiplex Temporal Networks for Rapid Mental Workload Classification.- Super-Resolution MRH Reconstruction for Mouse Models.- Bayesian Time Series Classifier for Decoding Simple Visual Stimuli from Intracranial Activity.- Variability of Non-parametric HRF in Interconnectedness and its Association in Deriving Resting State Network.- BrainSegNeT: A Lightweight Brain Tumor Segmentation Model based on U-Net and Progressive Neuron Expansion.- Improving Prediction Quality of Face Image Preference using Combinatorial Fusion Algorithm.- MMDF-ESI: Multi-Modal Deep Fusion of EEG and MEG for Brain Source Imaging.- Rejuvenating Classical Source Localization Methods with Spatial Graph Filters.- Prediction of Cannabis Addictive Patients with Graph Neural Networks.- Unsupervised Sparse-view Backprojection via Convolutional and Spatial Transformer Networks.- Latent Neural Source Recovery via Transcoding of Simultaneous EEG-fMRI.- Informatics Paradigms for Brain and Mental Health Research: Increasing the Power of Two-Sample T-Tests in Health Psychology using a Compositional Data Approach.- Estimating Dynamic Posttraumatic Stress Symptom Trajectories with Functional Data Analysis.- Comparison Between Explainable AI Algorithms for Alzheimer's Disease Prediction Using EfficientNet Models.- Social and Non-social Reward Learning Contexts for Detection of Major Depressive Disorder using EEG: A Machine Learning Approach.- Transfer Learning-Assisted DementiaNet: A Four Layer Deep CNN for Accurate Alzheimer's Disease Detection from MRI Images.- Multimodal Approaches for Alzheimer's Detection Using Patients' Speech and Transcript.- Brain-Machine Intelligence and Brain-Inspired Computing.- Exploiting Approximate Joint Diagonalization for Covariance Estimation in Imagined Speech Decoding.- Automatic Sleep-Wake Scoring with Optimally Selected EEG Channels from High-Density EEG.- EEG Source Imaging of Hand Movement-Related Areas: An Evaluation of the Reconstruction Accuracy with Optimized Channels.- Bagging the Best: A Hybrid SVM-KNN Ensemble for Accurate and Early Detection of Alzheimer's and Parkinson's Diseases.- Roe: A Computational-Efficient Anti-Hallucination Fine-Tuning Technology for Large Language Model Inspired by Human Learning Process.- The 5th International Workshop on Cognitive Neuroscience of Thinking and Reasoning: Brain Intervention Therapy Dilemma: Functional Recovery versus Identity.

最近チェックした商品