Deep Learning for Fluid Simulation and Animation : Fundamentals, Modeling, and Case Studies (Springerbriefs in Mathematics)

個数:

Deep Learning for Fluid Simulation and Animation : Fundamentals, Modeling, and Case Studies (Springerbriefs in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 164 p.
  • 言語 ENG
  • 商品コード 9783031423321

Full Description

This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost.
This work starts with a brief review of computability theory, aimed to convince the reader - more specifically, researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.
The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing. 
The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.

Contents

Introduction.- Fluids and Deep Learning: A Brief Review.- Fluid Modeling through Navier-Stokes Equations and Numerical Methods.- Why Use Neural Networks for Fluid Animation.- Modeling Fluids through Neural Networks.- Fluid Rendering.- Traditional Techniques.- Advanced Techniques.- Deep Learning in Rendering.- Case Studies.- Perspectives.- Discussion and Final Remarks.- References.

最近チェックした商品