The Probability Integral : Its Origin, Its Importance, and Its Calculation

個数:

The Probability Integral : Its Origin, Its Importance, and Its Calculation

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 189 p.
  • 商品コード 9783031384158

Full Description

This book tells the story of the probability integral, the approaches to analyzing it throughout history, and the many areas of science where it arises. The so-called probability integral, the integral over the real line of a Gaussian function, occurs ubiquitously in mathematics, physics, engineering and probability theory. Stubbornly resistant to the undergraduate toolkit for handling integrals, calculating its value and investigating its properties occupied such mathematical luminaries as De Moivre, Laplace, Poisson, and Liouville. This book introduces the probability integral, puts it into a historical context, and describes the different approaches throughout history to evaluate and analyze it. The author also takes entertaining diversions into areas of math, science, and engineering where the probability integral arises: as well as being indispensable to probability theory and statistics, it also shows up naturally in thermodynamics and signal processing. Designed to be accessible to anyone at the undergraduate level and above, this book will appeal to anyone interested in integration techniques, as well as historians of math, science, and statistics.

Contents

Chapter 1. De Moivre and the Discovery of the Probability Integral.- Chapter 2. Laplace's First Derivation.- Chapter 3. How Euler Could Have Done It Before Laplace (but  did he?).- Chapter 4. Laplace's Second Derivation.- Chapter 5. Generalizing the Probability Integral.- Chapter 6. Poisson's Derivation.- Chapter 7. Rice's Radar Integral.- Chapter 8. Liouville's Theorem that  Has No Finite Form.- Chapter 9. How the Error Function Appeared in the Electrical Response of the Trans-Atlantic Telegraph Cable.- Chapter 10. Doing the Probability Integral with Differentiation.- chapter 11. The Probability Integral as a Volume.- Chapter 12. How Cauchy Could Have Done It (but didn't).- Chapter 13. Fourier Has the Penultimate Technical Word.- Chapter 14. Finbarr Holland Has the Last Technical Word.- Chapter 15. A Final Comment on Mathematical Proofs.

最近チェックした商品