Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning : Journey from Single-core Acceleration to Multi-core Heterogeneous Systems

個数:

Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning : Journey from Single-core Acceleration to Multi-core Heterogeneous Systems

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 186 p.
  • 言語 ENG
  • 商品コード 9783031382321

Full Description

This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.

Contents

Chapter 1: Introduction.- Chapter 2 Algorithmic Background for Machine Learning.- Chapter 3 Scoping the Landscape of (Extreme) Edge Machine Learning Processors.- Chapter 4 Hardware-Software Co-optimization through Design Space Exploration.- Chapter 5 Energy Efficient Single-core Hardware Acceleration.- Chapter 6 TinyVers: A Tiny Versatile All-Digital Heterogeneous Multi-core System-on-Chip.- Chapter 7 DIANA: Digital and ANAlog Heterogeneous Multi-core System-on-Chip.- Chapter 8 Networks-on-chip to Enable Large-scale Multi-core ML Acceleration.- Chapter 9 Conclusion.

最近チェックした商品