Clinical Applications of Artificial Intelligence in Real-World Data

個数:

Clinical Applications of Artificial Intelligence in Real-World Data

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 285 p.
  • 言語 ENG
  • 商品コード 9783031366802

Full Description

This book is a thorough and comprehensive guide to the use of modern data science within health care. Critical to this is the use of big data and its analytical potential to obtain clinical insight into issues that would otherwise have been missed and is central to the application of artificial intelligence. It therefore has numerous uses from diagnosis to treatment. 
Clinical Applications of Artificial Intelligence in Real-World Data is a critical resource for anyone interested in the use and application of data science within medicine, whether that be researchers in medical data science or clinicians looking for insight into the use of these techniques.

Contents

Part 1: Data Processing, Storage, Regulations.- Biomedical Big Data: Opportunities and Challenges.- Quality Control, Data Cleaning, Imputation.- Data Security And Privacy Issues.- Data Standards and Terminology.- Biomedical Ontologies.- Graph Databases as Future Of Data Storage.- Data Integration, Harmonization.- Natural Language Processing And Text Mining- Turning Unstructured Data Into Structured.- Part 2: Analytics.- Statistical Analysis Statistical Analysis - Causality, Mendelian Randomization.- Statistical Analysis - Meta-Analysis/Reproducibility.- Machine Learning - Basic Concepts.- Machine Learning - Basic Supervised Methods.- Machine Learning - Basic Unsupervised Methods.- Machine Learning - Evaluation.- Machine Learning - Representation Learning/Feature Selection/Engineering.- Machine Learning - Interpretation.- Deep Learning - Prediction.- Deep Learning - Autoencoders.- Artificial Intelligence.- Machine Learning In Practice - Clinical Decision Support, Risk Prediction, Diagnosis.- Machine Learning In Practice - Evaluation Clinical Value, Guidelines.- Challenges Of Machine Learning and AI.

最近チェックした商品