機械学習のモデリングとシミュレーションの段階:手法と応用<br>Machine Learning in Modeling and Simulation : Methods and Applications (Computational Methods in Engineering & the Sciences)

個数:

機械学習のモデリングとシミュレーションの段階:手法と応用
Machine Learning in Modeling and Simulation : Methods and Applications (Computational Methods in Engineering & the Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 451 p.
  • 商品コード 9783031366437

Full Description

Machine learning (ML)  approaches have been extensively and successfully employed in various areas, like in economics, medical predictions,  face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time.  With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of  modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.

Contents

Machine Learning in Computer-Aided Engineering.- Artificial Neural Networks.- Gaussian Processes.- Machine Learning Methods for Constructing Dynamic Models from Data.- Physics-Informed Neural Networks: Theory and Applications.- Physics-Informed Deep Neural Operator Networks.- Digital Twin for Dynamical Systems.- Reduced Order Modeling.- Regression Models for Machine Learning.- Overview on Machine Learning Assisted Topology Optimization Methodologies.- Mixed-variable Concurrent Material, Geometry and Process Design in Integrated Computational Materials Engineering.- Machine Learning Interatomic Potentials: Keys to First-principles Multiscale Modeling.

最近チェックした商品