The Big Book of Real Analysis : From Numbers to Measures

個数:

The Big Book of Real Analysis : From Numbers to Measures

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 938 p.
  • 言語 ENG
  • 商品コード 9783031308314
  • DDC分類 515.8

Full Description

This book provides an introduction to real analysis, a fundamental topic that is an essential requirement in the study of mathematics. It deals with the concepts of infinity and limits, which are the cornerstones in the development of calculus.

Beginning with some basic proof techniques and the notions of sets and functions, the book rigorously constructs the real numbers and their related structures from the natural numbers. During this construction, the readers will encounter the notions of infinity, limits, real sequences, and real series. These concepts are then formalised and focused on as stand-alone objects. Finally, they are expanded to limits, sequences, and series of more general objects such as real-valued functions. Once the fundamental tools of the trade have been established, the readers are led into the classical study of calculus (continuity, differentiation, and Riemann integration) from first principles. The book concludes with an introduction to the studyof measures and how one can construct the Lebesgue integral as an extension of the Riemann integral.

This textbook is aimed at undergraduate students in mathematics. As its title suggests, it covers a large amount of material, which can be taught in around three semesters. Many remarks and examples help to motivate and provide intuition for the abstract theoretical concepts discussed. In addition, more than 600 exercises are included in the book, some of which will lead the readers to more advanced topics and could be suitable for independent study projects. Since the book is fully self-contained, it is also ideal for self-study.

Contents

Preface.- 1. Logic and Sets.- 2. Integers.- 3. Construction of the Real Numbers.- 4. The Real Numbers.- 5. Real Sequences.- 6. Some Applications of Real Sequences.- 7. Real Series.- 8. Additional Topics in Real Series.- 9. Functions and Limits.- 10. Continuity.- 11. Function Sequences and Series.- 12. Power Series.- 13. Differentiation.- 14. Some Applications of Differentiation.- 15. Riemann and Darboux Integration.- 16. The Fundamental Theorem of Calculus.- 17. Taylor and MacLaurin Series.- 18. Introduction to Measure Theory.- 19. Lebesgue Integration.- 20. Double Integrals.- Solutions to the Exercises.- Bibliography.- Index.

最近チェックした商品