Basics of Optimization Theory (Synthesis Lectures on Mathematics & Statistics)

個数:

Basics of Optimization Theory (Synthesis Lectures on Mathematics & Statistics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 143 p.
  • 商品コード 9783031292187

Full Description

This book presents a short introduction to the main tools of optimization methodology including linear programming, steepest descent, conjugate gradients, and the Karush-Kuhn-Tucker-John conditions. Each topic is developed in terms of a specific physical model, so that the strategy behind every step is motivated by a logical, concrete, easily visualized objective. A quick perusal of the Fibonacci search algorithm provides a simple and tantalizing first encounter with optimization theory, and a review of the max-min exposition of one-dimensional calculus prepares readers for the more sophisticated topics found later in the book. Notable features are the innovative perspectives on the simplex algorithm and Karush-Kuhn-Tucker-John conditions as well as a wealth of helpful diagrams. The author provides pointers to references for readers who would like to learn more about rigorous definitions, proofs, elegant reformulations and extensions, and case studies. However, the book is sufficiently self-contained to serve as a reliable resource for readers who wish to exploit commercially available optimization software without investing the time to develop expertise in its aspects.
This book also:

Features innovative perspectives on the simplex algorithm and Krushal-Kuhn-Tucker-John conditions
Serves as a resource for readers to use the tools of optimization without needing to acquire expertise in the theory
Features  plentiful resources that focus on rigorous definitions, proofs, and case studies

Contents

A Preliminary Note.- Fibonnacci Search.- Linear Programming.- Nonlinear Programming in One Dimension.- Nonlinear Multidimensional Optimization.- Constrained Optimization.

最近チェックした商品