Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck (Progress in Mathematics)

個数:

Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck (Progress in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 184 p.
  • 商品コード 9783031272332

Full Description

This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck  theorem.  One main tool used is the equivalence of categories established by Block between the derived category of bounded complexes with coherent cohomology and the homotopy category of antiholomorphic superconnections.  Chern-Weil theoretic techniques are then used to construct forms that represent the Chern character. The main theorem is then established using methods of analysis, by combining local index theory with the hypoelliptic Laplacian.
Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck is an important contribution to both the geometric and analytic study of complex manifolds and, as such, it will be a valuable resource formany researchers in geometry, analysis, and mathematical physics. 

Contents

Introduction.- Bott-Chern Cohomology and Characteristic Classes.- The Derived Category ${\mathrm{D^{b}_{\mathrm{coh}}}}$.- Preliminaries on Linear Algebra and Differential Geometry.- The Antiholomorphic Superconnections of Block.- An Equivalence of Categories.- Antiholomorphic Superconnections and Generalized Metrics.- Generalized Metrics and Chern Character Forms.- The Case of Embeddings.- Submersions and Elliptic Superconnections.- Elliptic Superconnection Forms and Direct Images.- A Proof of Theorem 10-1 when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$..- The Hypoelliptic Superconnections.- The Hypoelliptic Superconnection Forms.-  The Hypoelliptic Superconnection Forms when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$.-  Exotic Superconnections and Riemann-Roch-Grothendieck.- Subject Index.- Index of Notation.- Bibliography.

最近チェックした商品