Simple Type Theory : A Practical Logic for Expressing and Reasoning about Mathematical Ideas (Computer Science Foundations and Applied Logic)

個数:

Simple Type Theory : A Practical Logic for Expressing and Reasoning about Mathematical Ideas (Computer Science Foundations and Applied Logic)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 295 p.
  • 商品コード 9783031211140

Full Description

This unique textbook, in contrast to a standard logic text, provides the reader with a logic that actually can be used in practice to express and reason about mathematical ideas.The book is an introduction to simple type theory, a classical higher-order version of predicate logic that extends first-order logic. It presents a practice-oriented logic called Alonzo that is based on Alonzo Church's formulation of simple type theory known as Church's type theory. Unlike traditional predicate logics, Alonzo admits undefined expressions. The book illustrates, using Alonzo, how simple type theory is suited ideally for reasoning about mathematical structures and constructing libraries of mathematical knowledge.

Topics and features:

Offers the first book-length introduction to simple type theory as a predicate logic
Provides the reader with a logic that is close to mathematical practice
Presents the tools needed to build libraries of mathematical knowledge
Employs two semantics, one for mathematics and one for logic
Emphasizes the model-theoretic view of predicate logic
Includes several important topics, such as definite description and theory morphisms, not usually found in standard logic textbooks

Aimed at students of computing and mathematics at the graduate or upper-undergraduate level, this book is also well-suited for mathematicians, computing professionals, engineers, and scientists who need a practical logic for expressing and reasoning about mathematical ideas.

William M. Farmer is a Professor in the Department of Computing and Software at McMaster University in Hamilton, Ontario, Canada.

Contents

1 Introduction.- 2  Answers to Readers' Questions.- 3 Preliminary Concepts.- 4 Syntax.- 5 Semantics.- 6 Additional Notation.- 7 Beta-reduction and Substitution.- 8 Proof Systems.- 9 Theories.- 10 Sequences.- 11 Developments.- 12 Real Number Mathematics.- 13 Morphisms 14 Alonzo Variants.- 15 Software Support.

最近チェックした商品