What is the iε for the S-matrix? (Springerbriefs in Physics)

個数:

What is the iε for the S-matrix? (Springerbriefs in Physics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 165 p.
  • 商品コード 9783031182570

Full Description

This book provides a modern perspective on the analytic structure of scattering amplitudes in quantum field theory, with the goal of understanding and exploiting consequences of unitarity, causality, and locality. It focuses on the question: Can the S-matrix be complexified in a way consistent with causality? The affirmative answer has been well understood since the 1960s, in the case of 2→2 scattering of the lightest particle in theories with a mass gap at low momentum transfer, where the S-matrix is analytic everywhere except at normal-threshold branch cuts. We ask whether an analogous picture extends to realistic theories, such as the Standard Model, that include massless fields, UV/IR divergences, and unstable particles. Especially in the presence of light states running in the loops, the traditional iε prescription for approaching physical regions might break down, because causality requirements for the individual Feynman diagrams can be mutually incompatible. We demonstrate that such analyticity problems are not in contradiction with unitarity. Instead, they should be thought of as finite-width effects that disappear in the idealized 2→2 scattering amplitudes with no unstable particles, but might persist at higher multiplicity. To fix these issues, we propose an iε-like prescription for deforming branch cuts in the space of Mandelstam invariants without modifying the analytic properties of the physical amplitude. This procedure results in a complex strip around the real part of the kinematic space, where the S-matrix remains causal. We illustrate all the points on explicit examples, both symbolically and numerically, in addition to giving a pedagogical introduction to the analytic properties of the perturbative S-matrix from a modern point of view. To help with the investigation of related questions, we introduce a number of tools, including holomorphic cutting rules, new approaches to dispersion relations, as well as formulae for local behavior of Feynmanintegrals near branch points. This book is well suited for anyone with knowledge of quantum field theory at a graduate level who wants to become familiar with the complex-analytic structure of Feynman integrals.

Contents

1. Introduction.-  2. Unitarity implies anomalous thresholds.-  3. Primer on the analytic S-matrix 4.-  Singularities as classical saddle points.-  5. Branch cut deformations.-  6. Glimpse at generalized dispersion relations.-  7. Fluctuations around classical saddle points.-  8. Conclusion Appendix. Review of Schwinger parametrization.

最近チェックした商品