Computational Mathematics Modeling in Cancer Analysis : First International Workshop, CMMCA 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

個数:

Computational Mathematics Modeling in Cancer Analysis : First International Workshop, CMMCA 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 160 p.
  • 商品コード 9783031172656

Full Description

This book constitutes the proceedings of the First Workshop on Computational Mathematics Modeling in Cancer Analysis (CMMCA2022), held in conjunction with MICCAI 2022, in Singapore in September 2022. Due to the COVID-19 pandemic restrictions, the CMMCA2022 was held virtually.

DALI 2022 accepted 15 papers from the 16 submissions that were reviewed. A major focus of CMMCA2022 is to identify new cutting-edge techniques and their applications in cancer data analysis in response to trends and challenges in theoretical, computational and applied aspects of mathematics in cancer data analysis.

Contents

Cellular Architecture on Whole Slide Images Allows the Prediction of Survival in Lung Adenocarcinoma .- Is More Always Better? Effects of Patch Sampling in Distinguishing Chronic Lymphocytic Leukemia from Transformation to Diffuse Large B-cell Lymphoma.- Repeatability of Radiomic Features against Simulated Scanning Position Stochasticity across Imaging Modalities and Cancer Subtypes: A Retrospective Multi-Institutional Study on Head-and-Neck Cases.- MLCN: Metric Learning Constrained Network for Whole Slide Image Classification with Bilinear Gated Attention Mechanism.- NucDETR: End-to-End Transformer for Nucleus Detection in Histopathology Images.- Self-supervised learning based on a pre-trained method for the subtype classification of spinal tumors.- CanDLE: Illuminating Biases in Transcriptomic Pan-Cancer Diagnosis.- Cross-Stream Interactions: Segmentation of Lung Adenocarcinoma Growth Patterns.- Modality-collaborative AI model Ensemble for Lung Cancer Early Diagnosis.- Clustering-based Multi-instance Learning Network for Whole Slide Image Classification.- Multi-task Learning-driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification.- Light Annotation Fine Segmentation: Histology Image Segmentation based on VGG Fusion with Global Normalisation CAM.- Tubular Structure-Aware Convolutional Neural Networks for Organ at Risks Segmentation in Cervical Cancer Radiotherapy.- Automatic Computer-aided Histopathologic Segmentation for Nasopharyngeal Carcinoma using Transformer Framework.- Accurate Breast Tumor Identification UsingComputational Ultrasound Image Features.

最近チェックした商品