Machine Learning for Medical Image Reconstruction : 5th International Workshop, MLMIR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings (Lecture Notes in Computer Science)

個数:

Machine Learning for Medical Image Reconstruction : 5th International Workshop, MLMIR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 157 p.
  • 商品コード 9783031172465

Full Description

This book constitutes the refereed proceedings of the 5th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2022, held in conjunction with MICCAI 2022, in September 2022, held in Singapore.The 15 papers presented were carefully reviewed and selected from 19 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.

Contents

Deep Learning for Magnetic Resonance Imaging.- Rethinking the optimization process for self-supervised model-driven MRI reconstruction.- NPB-REC: Non-parametric Assessment of Uncertainty in Deep-learning-based MRI Reconstruction from Undersampled Data.- Adversarial Robustness of MR Image Reconstruction under Realistic Perturbations.- High-Fidelity MRI Reconstruction with the Densely Connected Network Cascade and Feature Residual Data Consistency Priors.- Metal artifact correction MRI using multi-contrast deep neural networks for diagnosis of degenerative spinal diseases.- Segmentation-Aware MRI Reconstruction.- MRI Reconstruction with Conditional Adversarial Transformers.- Deep Learning for General Image Reconstruction- A Noise-level-aware Framework for PET Image Denoising.- DuDoTrans: Dual-Domain Transformer for Sparse-View CT Reconstruction.- Ce Wang, Kun Shang, Haimiao Zhang, Qian Li, and S. Kevin Zhou Deep Denoising Network for X-Ray Fluoroscopic Image Sequences of Moving Objects.- PP-MPI: A Deep Plug-and-Play Prior for Magnetic Particle Imaging Reconstruction.- Learning while Acquisition: Towards Active Learning Framework for Beamforming in Ultrasound Imaging.- DPDudoNet: Deep-Prior based Dual-domain Network for Low-dose Computed Tomography Reconstruction.- MTD-GAN: Multi-Task Discriminator based Generative Adversarial Networks for Low-Dose CT Denoising.- Uncertainty-Informed Bayesian PET Image Reconstruction using a Deep Image Prior.

最近チェックした商品