実践的意思決定のための機械学習:医療・技術・ビジネス応用を含む複合領域的視座(テキスト)<br>Machine Learning for Practical Decision Making : A Multidisciplinary Perspective with Applications from Healthcare, Engineering and Business Analytics (International Series in Operations Research & Management Science)

個数:

実践的意思決定のための機械学習:医療・技術・ビジネス応用を含む複合領域的視座(テキスト)
Machine Learning for Practical Decision Making : A Multidisciplinary Perspective with Applications from Healthcare, Engineering and Business Analytics (International Series in Operations Research & Management Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 465 p.
  • 商品コード 9783031169892

Full Description

This book provides a hands-on introduction to Machine Learning (ML) from a multidisciplinary perspective that does not require a background in data science or computer science. It explains ML using simple language and a straightforward approach guided by real-world examples in areas such as health informatics, information technology, and business analytics. The book will help readers understand the various key algorithms, major software tools, and their applications. Moreover, through examples from the healthcare and business analytics fields, it demonstrates how and when ML can help them make better decisions in their disciplines.

The book is chiefly intended for undergraduate and graduate students who are taking an introductory course in machine learning. It will also benefit data analysts and anyone interested in learning ML approaches.

Contents

1. ​Introduction to Machine Learning.- 2. Statistics.- 3. Overview of Machine Learning Algorithms.- 4. Data Preprocessing.- 5. Data Visualization.- 6. Linear Regression.- 7. Logistic Regression.- 8. Decision Trees.- 9. Naïve Bayes.- 10. K-Nearest Neighbors.- 11. Neural Networks.- 12. K-Means.- 13. Support Vector Machine.- 14. Voting and Bagging.- 15. Boosting and Stacking.- 16. Future Directions and Ethical Considerations.

最近チェックした商品