The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry (Lecture Notes in Mathematics)

個数:

The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry (Lecture Notes in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 282 p.
  • 商品コード 9783031148682

Full Description

This book develops a new theory in convex geometry, generalizing positive bases and related to Carathéordory's Theorem by combining convex geometry, the combinatorics of infinite subsets of lattice points, and the arithmetic of transfer Krull monoids (the latter broadly generalizing the ubiquitous class of Krull domains in commutative algebra)This new theory is developed in a self-contained way with the main motivation of its later applications regarding factorization. While factorization into irreducibles, called atoms, generally fails to be unique, there are various measures of how badly this can fail. Among the most important is the elasticity, which measures the ratio between the maximum and minimum number of atoms in any factorization. Having finite elasticity is a key indicator that factorization, while not unique, is not completely wild. Via the developed material in convex geometry, we characterize when finite elasticity holds for any Krull domain with finitely generated class group $G$, with the results extending more generally to transfer Krull monoids.

This book is aimed at researchers in the field but is written to also be accessible for graduate students and general mathematicians.

Contents

- 1. Introduction. - 2. Preliminaries and General Notation. - 3. Asymptotically Filtered Sequences, Encasement and Boundedness. - 4. Elementary Atoms, Positive Bases and Reay Systems. - 5. Oriented Reay Systems. - 6. Virtual Reay Systems. - 7. Finitary Sets. - 8. Factorization Theory.

最近チェックした商品