Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series

個数:

Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 626 p.
  • 商品コード 9783031144615

Full Description

This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis.

The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group.
The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.

Contents

- 1. Partial Sums of Vilenkin-Fourier Series in Lebesgue Spaces. - 2. Martingales and Almost Everywhere Convergence of Partial Sums of Vilenkin-Fourier Series. - 3. Vilenkin-Fejér Means and an Approximate Identityin Lebesgue Spaces. - 4. Nörlund and T Means of Vilenkin-Fourier Series in Lebesgue Spaces. - 5. Theory of Martingale Hardy Spaces. - 6. Vilenkin-Fourier Coefficients and Partial Sums in Martingale Hardy Spaces. - 7. Vilenkin-Fejér Means in Martingale Hardy Spaces. - 8. Nörlund and T Means of Vilenkin-Fourier Series in Martingale Hardy Spaces. - 9. Convergence of Vilenkin-Fourier Series in Variable Martingale Hardy Spaces. - 10. Appendix: Dyadic Group and Walsh and Kaczmarz Systems.

最近チェックした商品