逆数学:組合せ論の問題・還元・証明(テキスト)<br>Reverse Mathematics : Problems, Reductions, and Proofs (Theory and Applications of Computability)

個数:

逆数学:組合せ論の問題・還元・証明(テキスト)
Reverse Mathematics : Problems, Reductions, and Proofs (Theory and Applications of Computability)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 488 p.
  • 言語 ENG
  • 商品コード 9783031113697

Full Description

Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights.

This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all areas of mathematics. It includes detailed introductions to techniques from computable mathematics, Weihrauch style analysis, and other parts of computability that have become integral to research in the field. 

Topics and features:

Provides a complete introduction to reverse mathematics, including necessary background from computability theory, second order arithmetic, forcing, induction, and model construction

Offers a comprehensive treatment of the reverse mathematics of combinatorics, including Ramsey's theorem, Hindman's theorem, and many other results

Provides central results and methods from the past two decades, appearing in book form for the first time and including preservation techniques and applications of probabilistic arguments

Includes a large number of exercises of varying levels of difficulty, supplementing each chapter

The text will be accessible to students with a standard first year course in mathematical logic. It will also be a useful reference for researchers in reverse mathematics, computability theory, proof theory, and related areas.

Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut, CT, USA. Carl Mummert is a Professor of Computer and Information Technology at Marshall University, WV, USA.

Contents

1 introduction.- Part I Computable mathematics: 2 Computability theory.- 3 Instance-solution problems.- 4 Problem reducibilities.- Part II Formalization and syntax: 5 Second order arithmetic.- 6 Induction and bounding.- 7 Forcing.- Part III Combinatorics: 8 Ramsey's theorem.- 9 Other combinatorial principles.- Part IV Other areas: 10 Analysis and topology.- 11 Algebra.- 12 Set theory and beyond.

最近チェックした商品