Modern Numerical Nonlinear Optimization (Springer Optimization and Its Applications)

個数:

Modern Numerical Nonlinear Optimization (Springer Optimization and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 807 p.
  • 商品コード 9783031087226

Full Description

This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications.

The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.

Contents

1. Introduction.- 2. Fundamentals on unconstrained optimization.-3 . Steepest descent method.- 4. Newton method.- 5. Conjugate gradient methods.- 6. Quasi-Newton methods.- 7. Inexact Newton method.- 8. Trust-region method.- 9. Direct methods for unconstrained optimization.- 10. Constrained nonlinear optimization methods.- 11. Optimality conditions for nonlinear optimization.- 12. Simple bound optimization.- 13. Quadratic programming.- 14. Penalty and augmented Lagrangian.- 15. Sequential quadratic programming.- 16. Generalized reduced gradient with sequential linearization. (CONOPT) - 17. Interior-point methods.- 18. Filter methods.- 19.  Interior-point filter line search (IPOPT).- Direct methods for constrained optimization.- 20. Direct methods for constrained optimization.- Appendix A. Mathematical review.- Appendix B. SMUNO collection. Small scale optimization applications.- Appendix C. LACOP collection. Large-scale continuous nonlinear optimization applications.- Appendix D. MINPACK-2 collection. Large-scale unconstrained optimization applications.- References.- Author Index.- Subject Index.

最近チェックした商品