抽象解析学と著名な不可能性問題(第2版)<br>Abstract Algebra and Famous Impossibilities : Squaring the Circle, Doubling the Cube, Trisecting an Angle, and Solving Quintic Equations (Readings in Mathematics) (2ND)

個数:

抽象解析学と著名な不可能性問題(第2版)
Abstract Algebra and Famous Impossibilities : Squaring the Circle, Doubling the Cube, Trisecting an Angle, and Solving Quintic Equations (Readings in Mathematics) (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 218 p.
  • 商品コード 9783031056970

Full Description

This textbook develops the abstract algebra necessary to prove the impossibility of four famous mathematical feats: squaring the circle, trisecting the angle, doubling the cube, and solving quintic equations. All the relevant concepts about fields are introduced concretely, with the geometrical questions providing motivation for the algebraic concepts. By focusing on problems that are as easy to approach as they were fiendishly difficult to resolve, the authors provide a uniquely accessible introduction to the power of abstraction.

Beginning with a brief account of the history of these fabled problems, the book goes on to present the theory of fields, polynomials, field extensions, and irreducible polynomials. Straightedge and compass constructions establish the standards for constructability, and offer a glimpse into why squaring, doubling, and trisecting appeared so tractable to professional and amateur mathematicians alike. However, the connection between geometry and algebra allows the reader to bypass two millennia of failed geometric attempts, arriving at the elegant algebraic conclusion that such constructions are impossible. From here, focus turns to a challenging problem within algebra itself: finding a general formula for solving a quintic polynomial. The proof of the impossibility of this task is presented using Abel's original approach.

Abstract Algebra and Famous Impossibilities illustrates the enormous power of algebraic abstraction by exploring several notable historical triumphs. This new edition adds the fourth impossibility: solving general quintic equations. Students and instructors alike will appreciate the illuminating examples, conversational commentary, and engaging exercises that accompany each section. A first course in linear algebra is assumed, along with a basic familiarity with integral calculus.

Contents

1. Algebraic Preliminaries.- 2. Algebraic Numbers and Their Polynomials.- 3. Extending Fields.- 4. Irreducible Polynomials.- 5. Straightedge and Compass Constructions.- 6. Proofs of the Geometric Impossibilities.- 7. Zeros of Polynomials of Degrees 2, 3, and 4.- 8. Quintic Equations 1: Symmetric Polynomials.- 9. Quintic Equations II: The Abel-Ruffini Theorem.- 10. Transcendence of e and π.- 11. An Algebraic Postscript.- 12. Other Impossibilities: Regular Polygons and Integration in Finite Terms.- References.- Index.

最近チェックした商品