VLADIMIR I. ARNOLD-Collected Works : Dynamics, Combinatorics, and Invariants of Knots, Curves, and Wave Fronts 1992-1995 (Vladimir I. Arnold - Collected Works 6) (2023. xv, 491 S. XV, 491 p. 231 illus. 242 mm)

個数:

VLADIMIR I. ARNOLD-Collected Works : Dynamics, Combinatorics, and Invariants of Knots, Curves, and Wave Fronts 1992-1995 (Vladimir I. Arnold - Collected Works 6) (2023. xv, 491 S. XV, 491 p. 231 illus. 242 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031048005

Full Description

This volume 6 of the Collected Works comprises 27 papers by V.I.Arnold, one of the most outstanding mathematicians of all times, written in 1991 to 1995. During this period Arnold's interests covered Vassiliev's theory of invariants and knots, invariants and bifurcations of plane curves,   combinatorics of Bernoulli, Euler and Springer numbers,   geometry of wave fronts, the Berry phase and quantum Hall effect.

The articles include a list of problems in dynamical systems, a discussion of the problem of (in)solvability of equations, papers on symplectic geometry of caustics and contact  geometry of wave fronts, comments on problems of A.D.Sakharov, as well as a rather unusual paper on projective topology. The interested reader will certainly enjoy Arnold's 1994 paper on mathematical problems in physics with the opening by-now famous phrase "Mathematics is the name for those domains of theoretical physics that are temporarily unfashionable."

The book will be of interest to the wide audience  from college students to professionals in mathematics or physics and in the history of science. The volume also includes translations of two interviews given by Arnold to the French and Spanish media. One can see how worried he was about the fate of Russian and world mathematics and science in general.

Contents

1 Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics.- 2 Congruences for Euler, Bernoulli and Springer numbers of Coxeter groups.- 3 The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups.- 4 Springer numbers and Morsification spaces.- 5 Polyintegrable flows.- 6 Bounds for Milnor numbers of intersections in holomorphic dynamical systems.- 7 Some remarks on symplectic monodromy of Milnor fibrations.- 8 Topological properties of Legendre projections in contact geometry of wave fronts [On topological properties of Legendre projections in contact geometry of wave fronts].- 9 Sur les propriétés topologiques des projections lagrangiennes en géométrie symplectique des caustiques [On topological properties of Lagrangian projections in symplectic geometry of caustics].- 10 Plane curves, their invariants, perestroikas and classifications (with an appendix by F. Aicardi).- 11 Invariants and perestroikas of plane fronts.- 12 The Vassiliev theory of discriminants and knots.- 13 The geometry of spherical curves and the algebra of quaternions.- 14 Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect.- 15 Problems on singularities and dynamical systems.- 16 Sur quelques problèmes de la théorie des systèmes dynamiques [On some problems in the theory of dynamical systems].- 17 Mathematical problems in classical physics.- 18 Problèmes résolubles et problèmes irrésolubles analytiques et géométriques [Solvable and unsolvable analytic and geometric problems].- 19 Projective topology.- 20 Questions à V.I. Arnold (an interview with M. Audin and P. Iglésias) [Questions to V.I. Arnold].- 21 En todo matemático hay un ángel y un demonio (an interview with Marimar Jiménez) [In every mathematician, there is an angel and a devil].- 22 Will Russian mathematics survive?.- 23 Will mathematics survive? Report on the Zurich Congress.- 24 Why study mathematics? What mathematicians think about it.- 25 Preface to the Russian translation of the book by M.F. Atiyah "The Geometry and Physics of Knots".- 26 A comment on one of A.D. Sakharov's "Amateur Problems".- 27 Comments on two of A.D. Sakharov's "Amateur Problems".- Acknowledgements.

最近チェックした商品