Machine Learning for Networking : 4th International Conference, MLN 2021, Virtual Event, December 1-3, 2021, Proceedings (Lecture Notes in Computer Science)

個数:

Machine Learning for Networking : 4th International Conference, MLN 2021, Virtual Event, December 1-3, 2021, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 161 p.
  • 商品コード 9783030989774

Full Description

This book constitutes the thoroughly refereed proceedings of the 4th International Conference on Machine Learning for Networking, MLN 2021, held in Paris, France, in December 2021. The 10 revised full papers included in the volume were carefully reviewed and selected from 30 submissions. They present and discuss new trends in in deep and reinforcement learning, pattern recognition and classification for networks, machine learning for network slicing optimization, 5G systems, user behavior prediction, multimedia, IoT, security and protection, optimization and new innovative machine learning methods, performance analysis of machine learning algorithms, experimental evaluations of machine learning, data mining in heterogeneous networks, distributed and decentralized machine learning algorithms, intelligent cloud-support communications, resource allocation, energy-aware communications, software-defined networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, and underwater sensor networks.

Contents

Evaluation of Machine Learning Methods for Image Classification: A Case Study of Facility Surface Damage.- One-Dimensional Convolutional Neural Network for Detection and Mitigation of DDoS Attacks in SDN.- Multi-Armed Bandit-based Channel Hopping: Implementation on Embedded Devices.- Cross Inference of Throughput Profiles Using Micro Kernel Network Method.- Machine Learning Models for Malicious Traffic Detection in IoT networks /IoT-23 dataset.- Application and Mitigation of the Evasion Attack against a Deep Learning Based IDS for Io.- DynamicDeepFlow: An Approach for Identifying Changes in Network Traffic Flow Using Unsupervised Clustering.- Unsupervised Anomaly Detection using a new Knowledge Graph Model for Network Activity and Events.- Deep Reinforcement Learning for Cost-Effective Controller Placement in Software-Defined Multihop Wireless Networking.- Distance estimation using LORA and neural networks.