数論の宇宙探検(テキスト)<br>Explorations in Number Theory : Commuting through the Numberverse (Undergraduate Texts in Mathematics)

個数:

数論の宇宙探検(テキスト)
Explorations in Number Theory : Commuting through the Numberverse (Undergraduate Texts in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 372 p.
  • 商品コード 9783030989330

Full Description

This innovative undergraduate textbook approaches number theory through the lens of abstract algebra.  Written in an engaging and whimsical style, this text will introduce students to rings, groups, fields, and other algebraic structures as they discover the key concepts of elementary number theory.  Inquiry-based learning (IBL) appears throughout the chapters, allowing students to develop insights for upcoming sections while simultaneously strengthening their understanding of previously covered topics.  The text is organized around three core themes: the notion of what a "number" is, and the premise that it takes familiarity with a large variety of number systems to fully explore number theory; the use of Diophantine equations as catalysts for introducing and developing structural ideas; and the role of abstract algebra in number theory, in particular the extent to which it provides the Fundamental Theorem of Arithmetic for various new number systems.  Other aspects of modern number theory - including the study of elliptic curves, the analogs between integer and polynomial arithmetic, p-adic arithmetic, and relationships between the spectra of primes in various rings - are included in smaller but persistent threads woven through chapters and exercise sets.
Each chapter concludes with exercises organized in four categories: Calculations and Informal Proofs, Formal Proofs, Computation and Experimentation, and General Number Theory Awareness.  IBL "Exploration" worksheets appear in many sections, some of which involve numerical investigations.  To assist students who may not have experience with programming languages, Python worksheets are available on the book's website.  The final chapter provides five additional IBL explorations that reinforce and expand what students have learned, and can be used as starting points for independent projects.  The topics covered in these explorations are public key cryptography, Lagrange's four-square theorem, units and Pell's Equation, various cases of the solution to Fermat's Last Theorem, and a peek into other deeper mysteries of algebraic number theory.
Students should have a basic familiarity with complex numbers, matrix algebra, vector spaces, and proof techniques, as well as a spirit of adventure to explore the "numberverse."

Contents

Preface.- What is a Number?- A Quick Survey of the Last Two Millenia.- Number Theory in $\mathcal{Z}$ Beginning.- Number Theory in the Mod-n Era.- Gaussian Number Theory: $\mathcal{Z}[i]$ of the Storm.- Number Theory: From Where We $\mathcal{R}$ to across the $mathcal{C}$.- Cyclotomic Number Theory: Roots and Reciprocity. Number Theory Unleashed: Release $\mathcal{Z}_p$!- The Adventure Continues.- Appendix: Number Systems.

最近チェックした商品