Interactions with Lattice Polytopes : Magdeburg, Germany, September 2017 (Springer Proceedings in Mathematics & Statistics)

個数:

Interactions with Lattice Polytopes : Magdeburg, Germany, September 2017 (Springer Proceedings in Mathematics & Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 364 p.
  • 商品コード 9783030983260

Full Description

This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.

Contents

G. Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes.- V. Batyrev, A. Kasprzyk, and K. Schaller, On the Fine interior of three-dimensional canonical Fano polytopes.- M. Blanco, Lattice distances in 3-dimensional quantum jumps.- A. Cameron, R. Dinu, M. Michałek, and T. Seynnaeve, Flag matroids: algebra and geometry.- D. Cavey and E. Kutas, Classification of minimal polygons with specified singularity content.- T. Coates, A. Corti, and Genival da Silva Jr, On the topology of Fano smoothings.- S. Di Rocco and A. Lundman, Computing Seshadri constants on smooth toric surfaces.- A. Higashitani, The characterisation problem of Ehrhart polynomials of lattice polytopes.- J. Hofscheier, The ring of conditions for horospherical homogeneous spaces.- K. Jochemko, Linear recursions for integer point transforms.- V. Kiritchenko and M. Padalko, Schubert calculus on Newton-Okounkov polytopes, Bach Le Tran, An Eisenbud-Goto-type upper bound for the Castelnuovo-Mumford regularity of fake weighted projective spaces.- M. Pabiniak, Toric degenerations in symplectic geometry.- A. Petracci, On deformations of toric Fano varieties.- T. Prince, Polygons of finite mutation type.- Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes.- A. Tsuchiya, The reflexive dimension of (0, 1)-polytopes.- 

最近チェックした商品