Towards the Automatization of Cranial Implant Design in Cranioplasty II : Second Challenge, AutoImplant 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings (Image Processing, Computer Vision, Pattern Recogniti

個数:

Towards the Automatization of Cranial Implant Design in Cranioplasty II : Second Challenge, AutoImplant 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings (Image Processing, Computer Vision, Pattern Recogniti

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 129 p.
  • 言語 ENG
  • 商品コード 9783030926519

Full Description

This book constitutes the Second Automatization of Cranial Implant Design in Cranioplasty Challenge, AutoImplant 2021, which was held in conjunction with the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, in Strasbourg, France, in September, 2021. The challenge took place virtually due to the COVID-19 pandemic.

The 7 papers are presented together with one invited paper, one qualitative evaluation criteria from neurosurgeons and a dataset descriptor. This challenge aims to provide more affordable, faster, and more patient-friendly solutions to the design and manufacturing of medical implants, including cranial implants, which is needed in order to repair a defective skull from a brain tumor surgery or trauma. The presented solutions can serve as a good benchmark for future publications regarding 3D volumetric shape learning and cranial implant design.

Contents

Personalized Calvarial Reconstruction in Neurosurgery.- Qualitative Criteria for Designing Feasible Cranial Implants.- Segmentation of Defective Skulls from CT Data for Tissue Modelling.- Improving the Automatic Cranial Implant Design in Cranioplasty by Linking Different Datasets.- Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation.- A U-Net based System for Cranial Implant Design with Pre-processing and Learned Implant Filtering.- Sparse Convolutional Neural Network for Skull Reconstruction.- Cranial Implant Prediction by Learning an Ensemble of Slice-based Skull Completion networks.- PCA-Skull: 3D Skull Shape Modelling Using Principal Component Analysis.- Cranial Implant Design using V-Net based Region of Interest Reconstruction.

最近チェックした商品