Advanced Analytics and Learning on Temporal Data : 6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September 13, 2021, Revised Selected Papers (Lecture Notes in Artificial Intelligence)

個数:

Advanced Analytics and Learning on Temporal Data : 6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September 13, 2021, Revised Selected Papers (Lecture Notes in Artificial Intelligence)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 195 p.
  • 商品コード 9783030914448

Full Description

This book constitutes the refereed proceedings of the 6th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2021, held during September 13-17, 2021. The workshop was planned to take place in Bilbao, Spain, but was held virtually due to the COVID-19 pandemic.

The 12 full papers presented in this book were carefully reviewed and selected from 21 submissions. They focus on the following topics: Temporal Data Clustering; Classification of Univariate and Multivariate Time Series; Multivariate Time Series Co-clustering; Efficient Event Detection; Modeling Temporal Dependencies; Advanced Forecasting and Prediction Models; Cluster-based Forecasting; Explanation Methods for Time Series Classification; Multimodal Meta-Learning for Time Series Regression; and Multivariate Time Series Anomaly Detection.

 

 

Contents

Oral Presentation.- Ranking by Aggregating Referees: Evaluating the Informativeness of Explanation Methods for Time Series Classification.- State Space approximation of Gaussian Processes for time-series forecasting.- Fast Channel Selection for Scalable Multivariate Time Series Classification.- Temporal phenotyping for characterisation of hospital care pathways of COVID patients.- A New Multivariate Time Series Co-clustering Non-Parametric Model Applied to Driving-Assistance Systems Validation.- TRAMESINO: Trainable Memory System for Intelligent Optimization of Road Traffic Control.- Detection of critical events in renewable energy production time series.- Poster Presentation.- Multimodal Meta-Learning for Time Series Regression.- Cluster-based Forecasting for Intermittent and Non-intermittent Time Series.- State discovery and prediction from multivariate sensor data.- RevDet: Robust and Memory Efficient Event Detection and Tracking in Large News Feeds.- From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information.

最近チェックした商品