Topological, Differential and Conformal Geometry of Surfaces (Universitext)

個数:

Topological, Differential and Conformal Geometry of Surfaces (Universitext)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 284 p.
  • 言語 ENG
  • 商品コード 9783030890315
  • DDC分類 516.36

Full Description

This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes' Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss-Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow's Theorem on compact holomorphic submanifolds in complex projective spaces.

Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.

Contents

-1. Basic Differential Geometry.- 2. The Geometry of Manifolds.- 3. Hyperbolic Geometry.- 4. Some Examples and Sources of Geometry.- 5. Differential Topology of Surfaces.- 6. Riemann Surfaces.- 7. Surfaces of Genus g = 0.- 8. Surfaces with Riemannian Metric.- 9. Outline: Uniformization by Spectral Determinant.- 10. Uniformization by Energy.- 11. Families of Spaces.- 12. Functions on Riemann Surfaces.- 13. Line Bundles and Cohomology.- 14. Moduli Spaces and Teichmüller Spaces.- 15. Dimensions of Spaces of Holomorphic Sections.- 16. The Teichmüller Curve and its Universal Property.- 17. Riemann Surfaces and Algebraic Curves.- 18. The Jacobian of a Riemann Surface.- 19. Special Metrics on J-Surfaces.- 20. The Fundamental Group and Coverings.- A. Reminder: Topology.- References.- Index.

最近チェックした商品