Structure and Regularity of Group Actions on One-Manifolds (Springer Monographs in Mathematics)

個数:

Structure and Regularity of Group Actions on One-Manifolds (Springer Monographs in Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 323 p.
  • 言語 ENG
  • 商品コード 9783030890056

Full Description

This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up through recent advances. Beginning with an investigation of regularity phenomena for single diffeomorphisms, the book goes on to describes a circle of ideas surrounding Filipkiewicz's Theorem, which recovers the smooth structure of a manifold from its full diffeomorphism group. Topics covered include the simplicity of homeomorphism groups, differentiability of continuous Lie group actions, smooth conjugation of diffeomorphism groups, and the reconstruction of spaces from group actions. Various classical and modern tools are developed for controlling the dynamics of general finitely generated group actions on one-dimensional manifolds, subject to regularity bounds, including material on Thompson's group F, nilpotent groups, right-angled Artin groups, chain groups, finitely generated groups with prescribed critical regularities, and applications to foliation theory and the study of mapping class groups.

The book will be of interest to researchers in geometric group theory.

Contents

1. Introduction.- 2. Denjoy's Theorem and Exceptional Diffeomorphisms of the Circle.- 3. Full Diffeomorphism Groups Determine the Diffeomorphism Class of a Manifold.- 4. The C1 and C2 Theory of Diffeomorphism Groups.- 5. Chain Groups.- 6. The Slow Progress Lemma.- 7. Algebraic Obstructions for General Regularities.- 8. Applications.- A. Concave Moduli of Continuity.- B. Orderability and Hölder's Theorem.- C. The Thurston Stability Theorem.- Index.

最近チェックした商品