Founding Mathematics on Semantic Conventions (Synthese Library)

個数:

Founding Mathematics on Semantic Conventions (Synthese Library)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 商品コード 9783030885335

Full Description

This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language - and specifically, the ability to institute conventions for the truth conditions of sentences.

This philosophical stance leads to an alternative way of practicing mathematics: instead of "building" objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory.

Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis.

Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, thissolution also applies to Russell's paradox and the other mathematical paradoxes of self-reference.

In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.

Contents

1. Introduction.- 2. Classical Mathematics and Plenitudinous Combinatorialism.- 3 Intuitionism and Choice Sequences.- 4. From Logicism to Predicativism.- 5. Conventional Truth.- 6. Semantic Conventionalism for Mathematics.- 7. A Convention for a Type-free Language.- 8. Basic Mathematics.- 9. Real Analysis.- 10. Possibility.- References.- Index of symbols.- General index.

最近チェックした商品