Machine Learning in Clinical Neuroimaging : 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings (Image Processing, Computer Vision, Pattern Recognition, and Graphics)

個数:

Machine Learning in Clinical Neuroimaging : 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings (Image Processing, Computer Vision, Pattern Recognition, and Graphics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 176 p.
  • 商品コード 9783030875855

Full Description

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.

Contents

Computational Anatomy.- Unfolding the medial temporal lobe cortex to characterize neurodegeneration due to Alzheimer's disease pathology using ex vivo imaging.- Distinguishing Healthy Ageing from Dementia: a Biomechanical Simulation of Brain Atrophy using Deep Networks.- Towards Self-Explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows.- Patch vs. global image-based unsupervised anomaly detection in MR brain scans of early Parkinsonian patients.- MRI image registration considerably improves CNN-based disease classification.- Dynamic Sub-graph Learning for Patch-based Cortical Folding Classification.- Detection of abnormal folding patterns with unsupervised deep generative models.- PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction.- Multi-Modal Brain Segmentation Using Hyper-Fused Convolutional Neural Network.- Robust Hydrocephalus Brain Segmentation via Globally and Locally Spatial Guidance.- Brain Networks and Time Series.- Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation.- Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data.- Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling.- Structure-Function Mapping via Graph Neural Networks.- Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics of Functional Connectivity.- H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning.- Constrained Learning of Task-related and Spatially-Coherent Dictionaries from Task fMRI Data.

最近チェックした商品