Federated Learning for IoT Applications (Eai/springer Innovations in Communication and Computing)

個数:

Federated Learning for IoT Applications (Eai/springer Innovations in Communication and Computing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 265 p.
  • 商品コード 9783030855611

Full Description

This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering. 

Contents

Chapter 1. Introduction to Federated Learning.- Chapter 2. Federated Learning for IoT Devices.- Chapter 3. Personalized Federated Learning.- Chapter 4. Federated Learning for an IoT Application.- Chapter 5. Some observations on the behaviour of Federated Learning.- Chapter 6. Federated Learning with Cooperating Devices: A Consensus Approach.- Chapter 7. A prospective study of federated machine learning in medical image fusion.- Chapter 8. Communication-Efficient Federated Learning in Wireless-Edge Architecture.- Chapter 9. Towards Ubiquitous AI in 6G with Federated Learning.- Chapter 10. Federated Learning using Tensor Flow.- Chapter 11. Cyber Security and privacy of Connected and Automated Vehicles (CAVs) based Federated Learning:  Challenges, Opportunities and Open Issues.- Chapter 12. Security Issues & Solutions for Healthcare Informatics.- Chapter 13. Federated Learning: Challenges, Methods, and Future Directions.- Chapter 14. Quantum Federated Learning for Wireless Communications.- Chapter 15. Federated machine learning with data mining in health care.- Chapter 16.  Federated Learning for data mining in Healthcare.

最近チェックした商品