Control Charts and Machine Learning for Anomaly Detection in Manufacturing (Springer Series in Reliability Engineering)

個数:

Control Charts and Machine Learning for Anomaly Detection in Manufacturing (Springer Series in Reliability Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 269 p.
  • 商品コード 9783030838218

Full Description

This book introduces the latest research on advanced control charts and new machine learning approaches to detect abnormalities in the smart manufacturing process. By approaching anomaly detection using both statistics and machine learning, the book promotes interdisciplinary cooperation between the research communities, to jointly develop new anomaly detection approaches that are more suitable for the 4.0 Industrial Revolution.

The book provides ready-to-use algorithms and parameter sheets, enabling readers to design advanced control charts and machine learning-based approaches for anomaly detection in manufacturing. Case studies are introduced in each chapter to help practitioners easily apply these tools to real-world manufacturing processes.

The book is of interest to researchers, industrial experts, and postgraduate students in the fields of industrial engineering, automation, statistical learning, and manufacturing industries.

Contents

Anomaly Detection in Manufacturing.- EWMA Time-Between-Events-and-Amplitude Control Charts for Correlated Data.- An Adaptive Exponentially Weighted Moving Average Chart for the Ratio of Two Normal Variables.- On the Performance of CUSUM t Chart in the Presence of Measurement Errors.- The Effect of Autocorrelation on the Shewhart Control Chart for the Ratio of Two Normal Variables.- LSTM Autoencoder Control Chart for Multivariate Time Series Data.- Real-Time Production Monitoring Approach for Smart Manufacturing with Artificial Intelligence Techniques.- Anomaly Detection in Graph with Machine Learning.- Profile Control Charts Based on Support Vector Data Description.- An Anomaly Detection Approach Based on the Combination of LSTM Autoencoder and Isolation Forest for Multivariate Time Series Data.

最近チェックした商品