Variational and Monotonicity Methods in Nonsmooth Analysis (Frontiers in Mathematics)

個数:

Variational and Monotonicity Methods in Nonsmooth Analysis (Frontiers in Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 446 p.
  • 言語 ENG
  • 商品コード 9783030816704

Full Description

This book provides a modern and comprehensive presentation of a wide variety of problems arising in nonlinear analysis, game theory, engineering, mathematical physics and contact mechanics. It includes recent achievements and puts them into the context of the existing literature.

The volume is organized in four parts. Part I contains fundamental mathematical results concerning convex and locally Lipschits functions. Together with the Appendices, this foundational part establishes the self-contained character of the text. As the title suggests, in the following sections, both variational and topological methods are developed based on critical and fixed point results for nonsmooth functions. The authors employ these methods to handle the exemplary problems from game theory and engineering that are investigated in Part II, respectively Part III. Part IV is devoted to applications in contact mechanics.

The book will be of interest to PhD students and researchers in applied mathematics as well as specialists working in nonsmooth analysis and engineering.

Contents

- Part I Mathematical Background. - 1. Convex and Lower Semicontinuous Functionals. - 2. Locally Lipschitz Functionals. - 3. Critical Points, Compactness Conditions and Symmetric Criticality. - Part II Variational Techniques in Nonsmooth Analysis and Applications. - 4. Deformation Results. - 5. Minimax and Multiplicity Results. - 6. Existence and Multiplicity Results for Differential Inclusions on Bounded Domains. - 7. Hemivariational Inequalities and Differential Inclusions on Unbounded Domains. - Part III Topological Methods for Variational and Hemivariational Inequalities. - 8. Fixed Point Approach. - 9. Nonsmooth Nash Equilibria on Smooth Manifolds. - 10. Inequality Problems Governed by Set-valued Maps of Monotone Type. - Part IV Applications to Nonsmooth Mechanics. - 11. Antiplane Shear Deformation of Elastic Cylinders in Contact with a Rigid Foundation. - 12. Weak Solvability of Frictional Problems for Piezoelectric Bodies in Contact with a Conductive Foundation. - 13. The Bipotential Method for Contact Models with Nonmonotone Boundary Conditions.

最近チェックした商品