Canard Cycles : From Birth to Transition (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / a Series of Modern Surveys in Mathematics)

個数:

Canard Cycles : From Birth to Transition (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / a Series of Modern Surveys in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 408 p.
  • 商品コード 9783030792350

Full Description

This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs.
In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure.
The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.

Contents

Part I Basic Notions.- 1 Basic Definitions and Notions.- 2 Local Invariants and Normal Forms.- 3 The Slow Vector Field.- 4 Slow-Fast Cycles.- 5 The Slow Divergence Integral.- 6 Breaking Mechanisms.- 7 Overview of Known Results.- Part II Technical Tools.- 8 Blow-Up of Contact Points.- 9 Center Manifolds.- 10 Normal Forms.- 11 Smooth Functions on Admissible Monomials and More.- 12 Local Transition Maps.- Part III Results and Open Problems.- 13 Ordinary Canard Cycles.- 14 Transitory Canard Cycles with Slow-Fast Passage Through a Jump Point.- 15 Transitory Canard Cycles with Fast-Fast Passage Through a Jump Point.- 16 Outlook and Open Problems.- Index.- References.

最近チェックした商品