特異点の幾何学・位相幾何学ハンドブック 第2集<br>Handbook of Geometry and Topology of Singularities II

個数:

特異点の幾何学・位相幾何学ハンドブック 第2集
Handbook of Geometry and Topology of Singularities II

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 578 p.
  • 言語 ENG
  • 商品コード 9783030780234

Full Description

This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics.Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways.

The book is addressed tograduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

Contents

Preface.- Contents.- Chapter 1 The Analytic Classificatio of Irreducible Plane Curve Singularities.- Chapter 2 Plane algebraic curves with prescribed singularities.- Chapter 3 Limit of tangents on complex surfaces.- Chapter 4 Algebro-geometric equisingularity of Zariski.- Chapter 5 Intersection homology.- Chapter 6 Milnor's fibratio theorem for real and complex singularities.- Chapter 7 Lê Cycles and Numbers of hypersurface singularities.- Chapter 8 Introduction to mixed hypersurface singularity.  - Chapter 9 From Singularities to Polyhedral Products.- Chapter 10 Complements to ample divisors and Singularities.- Index.

最近チェックした商品