責任の取れるAI:倫理的でバイアスを免れたアルゴリズムの実装<br>Responsible AI : Implementing Ethical and Unbiased Algorithms

個数:

責任の取れるAI:倫理的でバイアスを免れたアルゴリズムの実装
Responsible AI : Implementing Ethical and Unbiased Algorithms

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 177 p.
  • 言語 ENG
  • 商品コード 9783030768591

Full Description

This book is written for software product teams that use AI to add intelligent models to their products or are planning to use it. As AI adoption grows, it is becoming important that all AI driven products can demonstrate they are not introducing any bias to the AI-based decisions they are making, as well as reducing any pre-existing bias or discrimination.

 The responsibility to ensure that the AI models are ethical and make responsible decisions does not lie with the data scientists alone. The product owners and the business analysts are as important in ensuring bias-free AI as the data scientists on the team. This book addresses the part that these roles play in building a fair, explainable and accountable model, along with ensuring model and data privacy. Each chapter covers the fundamentals for the topic and then goes deep into the subject matter - providing the details that enable the business analysts and the data scientists to implement these fundamentals. 

AI research is one of the most active and growing areas of computer science and statistics. This book includes an overview of the many techniques that draw from the research or are created by combining different research outputs. Some of the techniques from relevant and  popular libraries are covered, but deliberately not drawn very heavily from as they are already well documented, and new research is likely to replace some of it.

Contents

Introduction.- Fairness and proxy features.- Bias in data.- Explainability.- Remove bias from ML model.- Remove bias from ML output.- Accountability in AI.- Data & Model privacy.- Conclusion.

最近チェックした商品