Festschrift in Honor of R. Dennis Cook : Fifty Years of Contribution to Statistical Science

個数:

Festschrift in Honor of R. Dennis Cook : Fifty Years of Contribution to Statistical Science

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 192 p.
  • 商品コード 9783030690113

Full Description

In honor of professor and renowned statistician R. Dennis Cook, this festschrift explores his influential contributions to an array of statistical disciplines ranging from experimental design and population genetics, to statistical diagnostics and all areas of regression-related inference and analysis. Since the early 1990s, Prof. Cook has led the development of dimension reduction methodology in three distinct but related regression contexts: envelopes, sufficient dimension reduction (SDR), and regression graphics. In particular, he has made fundamental and pioneering contributions to SDR, inventing or co-inventing many popular dimension reduction methods, such as sliced average variance estimation, the minimum discrepancy approach, model-free variable selection, and sufficient dimension reduction subspaces.
A prolific researcher and mentor, Prof. Cook is known for his ability to identify research problems in statistics that are both challenging and important, as well as his deep appreciation for the applied side of statistics. This collection of Prof. Cook's collaborators, colleagues, friends, and former students reflects the broad array of his contributions to the research and instructional arenas of statistics.

Contents

Sufficient dimension reduction through independence and conditional mean independence measures - Yuexiao Dong.- Model-based inverse regression and its applications - Tao Wang and Lixing Zhu.- Cook's Fisher Lectureship revisited for semi-supervised data reduction - Jae Keun Yoo.- Global testing under sparse alternatives for single index models - Qian Lin, Zhigen Zhao, and Jin Liu.- Supervised dimension reduction for spatian data - Christoph Muehlmann, Hanna Oja, and Klaus Nordhausen.- Sufficient dimension folding with categorical predictors - Yuanwen Wang, Yuan Xue, Qingcong Yuan, and Xiangrong Yin.

最近チェックした商品